• Gryphon Login
  • MyCourses
  • Alumni
  • UCLA Health
  • Contact Us
Prospective Students

Prospective Students

Prospective Students
  • Admissions
    Procedure & Timelines
    • Admissions Timeline
    • Admissions Procedure
    • Basis of Selection
    • COVID-19 Impacts on Admissions
    • Housing Information
    • Interview Process
    • Prerequisites
    General Information
    • Statement of Diversity
    • Mission Statement
    • Curriculum Resdesign
    • Honor Code
    • FAQs
    • Admissions Brochure
    • Admissions Timeline
    • Admission Procedure
    • Basis of Selection
    • Competencies
    • COVID-19 Impact on Admissions
    • DACA Applicants
    • DGSOM Mission Statement
    • Equity and Diversity Inclusion
    • FAQs
    • Honor Code
    • Housing Information
    • Interview Process
    • Virtual Events
  • Outreach & Pipeline Programs
    Summer Pre-Health and Postbaccaluareate Programs
    • UCLA SHPEP
    • UCLA PREP
    • UCLA RAP
    Outreach and Recruitment
    • Contact and Events
    • Mailing List
    • Summer Pre-Health and Postbaccalaureate Programs
    • Stay Connected
    • Join our Mailing List
  • Financial Aid & Scholarships
  • Degrees & Programs
  • Curriculum
  • Student Life
    Why Choose UCLA
    • Research
    • Clinical Work
    • Service Opportunities
    • Global Health Impact
    • Why You'll Love LA
    Campus Life
    • Student Organizations
    • Annual Events
    • Day in the Life
    • Around Campus
    • Photo Galleries
    • Medical and Research News
    • Medical Student Council
    • Geffy Guide
    • Search Campus and Health News
    • Service Opportunities
    • Global Health Impact
    • Why You'll Love LA
    • Photo Galleries
    • Day in the Life
    • Around Campus
    • Medical and Research News
    • Search Campus and Health News
  • How to Apply
  • Gryphon Login
  • MyCourses
  • Alumni
  • UCLA Health
  • Contact Us

Prospective Students

Search Campus and Health News

Search Campus and Health News

Search Campus and Health News

  • Health News
  • A Day in the Life
  • Around Campus
  • Medical and Research News
  • Health News
  • A Day in the Life
  • Around Campus
  • Medical and Research News
  1. Home
  2. Prospective Students
  3. Student Life
  4. Search Campus and Health News

Search Campus and Health News

Share this

Health News

Title

UCLA researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

Health News

Date
07/26/2017
Article

A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer’s disease and the inclusion bodies in motor neurons in the brains of people with amyotrophic lateral sclerosis are two examples. Those aggregates, and others like them, can kill cells and lead to debilitating and progressive neurodegenerative diseases.

A study by Douglas Black and colleagues in UCLA’s department of microbiology, immunology and molecular genetics, reveals that not all protein aggregates in brain cells are toxic. Their paper, published in the journal Cell, reports that an RNA-binding protein called Rbfox1, which is abundant in the brain, undergoes an unusual chemical transformation to form nontoxic aggregates inside neurons, and that this aggregation is needed for Rbfox1 to perform its essential function, which is splicing RNA during the gene expression process.

Mutations in the Rbfox1 gene are linked with some forms of familial epilepsy and autism spectrum disorder, so scientists are interested in understanding how Rbfox1 controls splicing in the brain. The new discovery is also important because the biochemistry of Rbfox1 is similar to those of proteins that are believed to play roles in several neurodegenerative disorders, including a protein called FUS, which aggregates in amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease.

In people with ALS, FUS is found in highly stable aggregates that are harmful to cellular function. Understanding what drives the normal aggregation of these proteins could help scientists explain how the toxic aggregates are formed in ALS.

Black’s team previously reported that Rbfox1 proteins function with a larger group of proteins called LASR, which together bind to RNA molecules in cell nuclei and direct them to cut and rejoin, a process called mRNA splicing.

“Our new work reveals that in some cases Rbfox must also interact with itself to control splicing,” Black said.

Yi Ying, a UCLA doctoral student, was the paper’s first author. Other contributors were Xiao-Jun Wang, Celine Vuong, Chia-Ho Lin and Andrey Damianov.

The study was supported by the Howard Hughes Medical Institute, National Institutes of Health grants; a UCLA dissertation year fellowship, the China Scholarship Council, and the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare
Top 10 U.S. Medical Schools
  • Giving
  • Publications
  • Newsroom
  • Weekly Digest
  • Directory
  • Contact Us
  • Diversity
  • Emergency
  • Maps & Directions
  • UC Regents
  • Abuse Free
  • Volunteer
  • Biomed Library
  • Disability Resources
  • UCLA Health
  • Smoke-Free
  • Sitemap
  • Terms of Use
Top 10 U.S. Medical Schools
Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare