• Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us
Neuroscience

UCLA Neuroscience Research Theme

Neuroscience
  • The Amazing Brain
  • The Developing Brain
  • The Working Brain
  • The Aging Brain
  • By Disease
  • Giving
  • Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us

UCLA Neuroscience Research Theme

Deconstructing the Amyloid Fiber

  1. Home
  2. Neuroscience
  3. The Aging Brain
  4. Deconstructing the Amyloid Fiber

Deconstructing the Amyloid Fiber

Share this

David S. Eisenberg, PhD

A hallmark of many neurodegenerative diseases, including Parkinson’s and Alzheimer’s, is the abnormal aggregation of proteins into fibrils called amyloids. One possible therapeutic approach would be to reverse this aggregation. For almost two decades, Dr. David Eisenberg, professor of biological chemistry and an investigator of the Howard Hughes Medical Institute , has been trying to visualize and determine structure of these amyloids. Dr. Eisenberg believes that understanding their molecular properties— the actual atomic structures—of these proteins holds the key to therapies that interrupt disease processes.

"Our basic idea is that if we stop fiber formation, we can halt disease," he says. "What we do is learn the structure of the particular fiber associated with each of these diseases. The next step is we design a molecule which will stop formation of the fiber."

In 2005, his lab determined for the first time the atomic-level structure for an amyloid fiber. Seeing the atomic structure provides clues as to why some proteins form amyloids and others do not and reveals potential targets for drugs to inhibit the formation of the proteins. He is now studying several different amyloid proteins, including the abnormal aggregates of the protein tau that are seen in the brains of people with Alzheimer's disease. His lab has identified the atomic structure for two segments of tau that causes it to form fibers. They are now working on designing a molecule —an inhibitor— to stop the fiber formation.

"We have 40 or more amyloid diseases, and there are no effective drugs for any of those diseases," Eisenberg says. "Why is that? It's because Big Pharma has thought that it's impossible to learn the structures of these targets. We've shown it is possible. Knowing that, one can design inhibitors. I believe it's absolutely key to learn the structures of these protein fibers."

Eisenberg Lab

To the left: Amyloid fibrils of human alpha-synuclein, residues 68-78. Alpha-synuclein fibrils are abundant in the cells of Parkinson's disease patients. The peptides self-assembles into sheets through backbone hydrogen bonds (dashed lines). Two sheets mate together tightly into fibrils. The tight fit between sheets lends the fibrils strength. The black line indicates the fibril axis. The structure was determined at 1.4 angstrom resolution using microED. Credit Jose A. Rodriguez and Michael R. Sawaya

Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare
Top U.S. Medical Schools in Primary Care
  • Giving
  • Contact Us
  • Diversity
  • Emergency
  • Maps & Directions
  • Publications
  • Directory
  • Report Misconduct
  • Volunteer
  • Biomed Library
  • Newsroom
  • Smoke-Free
  • Sitemap
  • Terms of Use
  • Report Broken Links
Top U.S. Medical Schools in Research
Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare