• Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us
Cardiovascular

UCLA Cardiovascular Research Theme

Cardiovascular
  • Mission and Leadership
    • CV Theme Leadership
    • Unified Vision for UCLA Research Themes
  • Research Faculty
  • Research Programs
    • Vascular Biology
    • Cardiovascular Calcification
    • Cardiovascular Genomics and Systems Biology
    • Cardiac Repair, Regeneration, and Heart Failure
    • Atherosclerosis and Lipid biology
    • Arrhythymia, Sudden Cardiac Death, and Ion channel biology
    • Cardiac Development and Congenital Heart Disease
  • Clinical Investigations
    • Cardiovascular Research in Precision Health
    • Structural Cardiology
  • Seminars
    • CTSI Lecture Series
    • CV Theme Seminars
  • Core Services
    • CV Research Theme Small Animal Physiology Core
    • CV Research Theme Cardiac Muscle Cell Core
    • TCGB core
    • Molecular Shared Screening Resource
    • Confocal Microscopy and Imaging
  • Support Science
  • Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us

UCLA Cardiovascular Research Theme

Pearl Quijada, PhD

Pearl Quijada, PhD 
Email: pquijada@ucla.edu

Cardiac development · Cardiac repair · Vascular biology

The epicardium is composed of a single cell layer that encapsulates the heart during embryogenesis. The epicardium also serves as a rich source of mesenchymal cells and growth factors that support coronary vasculature development. Although the function of the epicardium is invariably linked to the growth of the primitive coronary plexus, the cellular and molecular mechanisms that regulate the function of the epicardium remain unclear. To facilitate the identification of the epicardium’s role in embryonic angiogenesis, our lab utilizes transgenic mouse models and single-cell transcriptomic sequencing to discover novel epicardium-directed guidance cues required for arterio-venous specification and maturation of endothelial cells. As compared to the fetal heart, the adult myocardium is unable to undergo angiogenesis in response to ischemic injury, which ultimately leads to cardiac functional decline. By using information acquired from our studies during development, we are investigating the effects of pro-angiogenic factors from the epicardium to promote angiogenesis and repair after ischemic injury in the adult heart.

Publications

  • Pearl Quijada, Trembley MA, Small EM. (2020) The Role of Epicardium During Heart Development and Repair. Circ Res. Jan 31;126(3):377-394. PMID: 31999538 ; PMCID: PMC7000171
  • Pearl Quijada, Misra A, Velasquez LS, Burke RM, Lighthouse JK, Mickelsen DM, Dirkx RA Jr, Small EM. (2019) Pre-existing fibroblasts of epicardial origin are the primary source of pathological fibrosis in cardiac ischemia and aging. J Mol Cell Cardiol. 129:92-104. PMID: 30771308 ; PMCID: PMC6585455
  • Pearl Quijada, Salunga HT, Hariharan N, Cubillo J, El-Sayed Farid, Moshref M, Bala KM, Emathinger J, De La Torre A, Ormachea L, Alvarez R, Gude NA, Sussman MA. (2015) Cardiac stem cell hybrids enhance myocardial repair. Circ Res. 117(8):695-706. PMID: 26228030 ; PMCID: PMC4583815

Full PubMed Bibliography

Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare
Top U.S. Medical Schools in Primary Care
  • Giving
  • Contact Us
  • Diversity
  • Emergency
  • Maps & Directions
  • Publications
  • Directory
  • Report Misconduct
  • Volunteer
  • Biomed Library
  • Newsroom
  • Smoke-Free
  • Sitemap
  • Terms of Use
  • Report Broken Links
Top U.S. Medical Schools in Research
Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare