• Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us
Cardiovascular

UCLA Cardiovascular Research Theme

Cardiovascular
  • Mission and Leadership
    • CV Theme Leadership
    • Unified Vision for UCLA Research Themes
  • Research Faculty
  • Research Programs
    • Vascular Biology
    • Cardiovascular Calcification
    • Cardiovascular Genomics and Systems Biology
    • Cardiac Repair, Regeneration, and Heart Failure
    • Atherosclerosis and Lipid biology
    • Arrhythymia, Sudden Cardiac Death, and Ion channel biology
    • Cardiac Development and Congenital Heart Disease
  • Clinical Investigations
    • Cardiovascular Research in Precision Health
    • Structural Cardiology
  • Seminars
    • CTSI Lecture Series
    • CV Theme Seminars
  • Core Services
    • CV Research Theme Small Animal Physiology Core
    • CV Research Theme Cardiac Muscle Cell Core
    • TCGB core
    • Molecular Shared Screening Resource
    • Confocal Microscopy and Imaging
  • Support Science
  • Gryphon Login
  • MyCourses
  • UCLA Health
  • Contact Us

UCLA Cardiovascular Research Theme

The arteries, veins and capillaries are amazingly complicated.

Karol Watson, MD, named cardiologist of the year by the CA Chapter of the ACC

Leveraging a UCLA Cardiovascular discovery fund award to study calcium signaling.

Developing displacement analysis of myocardial mechanical deformation (DIAMOND).

Cardiovascular trainees with Nobel Laureates Michael S. Brown and Joseph L. Goldstein.

Trainee Spotlight

Peter Hanna, MD

Peter Hanna, MD

Peter is currently a cardiology fellow and PhD candidate in Molecular, Cellular and Integrative Physiology at the UCLA. As part of the Specialty Training and Advanced Research (STAR) program, he used a multiscale approach to create a comprehensive atlas of how the cardiac autonomic nervous system controls the heartbeat.

Learn More →

Learn & Discover


We are Passionate

The future of cardiovascular medicine is here at UCLA, because we have a team of investigators that are fully committed - from the level of clinical care, through discovery science and engineering, to community outreach, and to educating the next generation.

Support Science →

Investigator Spotlight


Jeffrey Hsu, MD, PhD

While cardiovascular calcification is associated with a higher risk of cardiac events, whether modifying calcification improves outcomes is unclear. New studies show that using fused micro-PET/CT imaging in mice allows researchers to better understand how cardiovascular calcification responds to interventions, such as endurance exercise and parathyroid hormone therapy.

Learn More →


Faculty News

NIH Director’s Transformative Research Award

Backed by a $6.2 million grant from the National Institutes of Health, UCLA Cardiovascular Research Theme members will lead a study of how COVID-19 causes multiple organ failure.

Learn More →

UCLA Broad Stem Cell Research Center/JCI Insight


Science Spotlight

A recent study by UCLA investigators solves the genetic diagnosis of a devastating form of congenital heart disease.

Primary Endocardial Fibroelastosis (pEFE) is a chamber specific congenital heart disease that manifests early after birth with profound left ventricular failure requiring heart transplantation within the first year of life. To date, pEFE diagnosis is solely based on pathological examination of the explanted heart. No medical treatment has been effective and heart transplantation is often the only option.

To elucidate the molecular genetic mechanisms of this disease entity, Dr. Touma and her team in the Neonatal/Congenital Heart Laboratory employed integrative genomic analysis of whole exome sequencing and RNA-seq. They also utilized patient-derived cells and explanted heart specimens to identify potential causal genetic variants. For the first time, they report novel contribution of ciliopathy genes to pEFE etiology. Specifically, the team discovered that a novel rare recessive variant in ALMS1 gene underlies the unique pEFE phenotype. Mutations in ALMS1 are known causal of Alstrom Syndrome, a well-recognized ciliopathy. Remarkably, Dr Touma’s team provided the first evidence linking pEFE to Alstrom Syndrome and demonstrated that the mechanism leading to this mysterious and incurable form of CHDs involves the induction of epithelial mesenchymal transition process in cardiac fibroblasts, potentially mediated by TGFβ signaling activation.

By generating patient-derived human induced pluripotent stem cells (hiPSCs), Dr. Touma and her colleagues have established a system for early perinatal diagnosis of ALMS1 variants and set up a pipeline for high throughput screening of novel therapeutic targets for pEFE revealed from their study.

Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare
Top U.S. Medical Schools in Primary Care
  • Giving
  • Contact Us
  • Diversity
  • Emergency
  • Maps & Directions
  • Publications
  • Directory
  • Report Misconduct
  • Volunteer
  • Biomed Library
  • Newsroom
  • Smoke-Free
  • Sitemap
  • Terms of Use
  • Report Broken Links
Top U.S. Medical Schools in Research
Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest Follow us on Flickr Follow us on Sharecare